Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 31, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
Recently, post-transcriptional regulation of mRNA mediated by N6-methyladenosine (m6A) has been found to have profound effects on transcriptome regulation during plant responses to various abiotic stresses. However, whether this RNA modification can affect an oxidative stress response in plants has not been studied. To assess the role of m6A modifications during copper-induced oxidative stress responses, m6A-IP-seq was performed in Arabidopsis seedlings exposed to high levels of copper sulfate. This analysis revealed large-scale shifts in this modification on the transcripts most relevant for oxidative stress. This altered epitranscriptomic mark is known to influence transcript abundance and translation; therefore we scrutinized these possibilities. We found an increased abundance of copper-enriched m6A-containing transcripts. Similarly, we also found increased ribosome occupancy of copper-enriched m6A-containing transcripts, specifically those encoding proteins involved with stress responses relevant to oxidative stressors. Furthermore, the significance of the m6A epitranscriptome on plant oxidative stress tolerance was uncovered by assessing germination and seedling development of the mta (N6-methyladenosine RNA methyltransferase A mutant complemented with ABI3:MTA) mutant exposed to high copper treatment. These analyses suggested hypersensitivity of the mta mutant compared to the wild-type plants in response to copper-induced oxidative stress. Overall, our findings suggest an important role for m6A in the oxidative stress response of Arabidopsis.more » « less
-
Since the discovery of the first ribonucleic acid (RNA) modifications in transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), scientists have been on a quest to decipher the identities and functions of RNA modifications in biological systems. The last decade has seen monumental growth in the number of studies that have characterized and assessed the functionalities of RNA modifications in the field of plant biology. Owing to these studies, we now categorize RNA modifications based on their chemical nature and the RNA on which they are found, as well as the array of proteins that are involved in the processes that add, read, and remove them from an RNA molecule. Beyond their identity, another key piece of the puzzle is the functional significance of the various types of RNA modifications. Here, we shed light on recent studies that help establish our current understanding of the diversity of RNA modifications found in plant transcriptomes and the functions they play at both the molecular (e.g., RNA stability, translation, and transport) and organismal (e.g., stress response and development) levels. Finally, we consider the key research questions related to plant gene expression and biology in general and highlight developments in various technologies that are driving our insights forward in this research area.more » « less
-
Abstract Various messenger RNA (mRNA) decay mechanisms play major roles in controlling mRNA quality and quantity in eukaryotic organisms under different conditions. While it is known that the recently discovered co‐translational mRNA decay (CTRD), the mechanism that allows mRNAs to be degraded while still being actively translated, is prevalent in yeast, humans, and various angiosperms, the regulation of this decay mechanism is less well studied. Moreover, it is still unclear whether this decay mechanism plays any role in the regulation of specific physiological processes in eukaryotes. Here, by re‐analyzing the publicly available polysome profiling or ribosome footprinting and degradome sequencing datasets, we discovered that highly translated mRNAs tend to have lower co‐translational decay levels. Based on this finding, we then identified Pelota and Hbs1, the translation‐related ribosome rescue factors, as suppressors of co‐translational mRNA decay in Arabidopsis. Furthermore, we found that Pelota and Hbs1 null mutants have lower germination rates compared to the wild‐type plants, implying that proper regulation of co‐translational mRNA decay is essential for normal developmental processes. In total, our study provides further insights into the regulation of CTRD in Arabidopsis and demonstrates that this decay mechanism does play important roles in Arabidopsis physiological processes.more » « less
-
Abstract Posttranscriptional regulation of mRNA mediated by methylation at the N6 position of adenine (N6-methyladenosine [m6A]) has profound effects on transcriptome regulation in plants. Focused studies across eukaryotes offer glimpses into the processes governed by m6A throughout developmental and disease states. However, we lack an understanding of the dynamics and the regulatory potential of m6A during biotic stress in plants. Here, we provide a comprehensive look into the effects of m6A on both the short-term and long-term responses to pathogen signaling in Arabidopsis (Arabidopsis thaliana). We demonstrate that m6A-deficient plants are more resistant to bacterial and fungal pathogen infections and have altered immune responses. Furthermore, m6A deposition is specifically coordinated on transcripts involved in defense and immunity prior to and proceeding the pathogen signal flagellin. Consequently, the dynamic modulation of m6A on specific stress-responsive transcripts is correlated with changes in abundance and cleavage of these transcripts. Overall, we show that the m6A methylome is regulated prior to and during simulated and active pathogen stress and functions in the coordination and balancing of normal growth and pathogen responses.more » « less
-
Abstract Although covalent nucleotide modifications were first identified on the bases of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), a number of these epitranscriptome marks have also been found to occur on the bases of messenger RNAs (mRNAs). These covalent mRNA features have been demonstrated to have various and significant effects on the processing (e.g. splicing, polyadenylation, etc.) and functionality (e.g. translation, transport, etc.) of these protein-encoding molecules. Here, we focus our attention on the current understanding of the collection of covalent nucleotide modifications known to occur on mRNAs in plants, how they are detected and studied, and the most outstanding future questions of each of these important epitranscriptomic regulatory signals.more » « less
An official website of the United States government
